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Equilibrium statistical mechanics of one-dimensional Hamiltonian systems with long-range force
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The system ofN identical classical particles on the circle of lendthinteracting via a pair potential is
investigated in the mean field limitN(—oe, L fixed). Its physical properties are determined by the Fourier
components of the interactiofmean field. The partition function, the joint distribution of the interaction
fields, the local field, and the correlation functions are computed. If the interaction is semidefinite non-negative,
field components become independent for>o0 and satisfy central limit theorems. If the interaction has
negative Fourier components, a phase transition ocf81€963-651X97)15705-1

PACS numbds): 05.45+b, 64.60.Cn, 05.70.Fh

Systems of many particles interacting via two-body long- N p_2
range forces have peculiar equilibrium and nonequilibrium H:Z —’+Vtm, (1)
statistical mechanicgl,2]. The Coulomb system, which has j=12m
been thoroughly investigated, combines the difficulties of
long-range interaction with a short-range divergence—or, irvith
one dimension, with a discontinuity in the electric field. Re-
cent numerical simulationg8—6] and theoretical arguments
[7-9] indicate that the characteristics of Coulombian plasma Vior= ﬁjzl 9r; V(X = X)), 2
turbulence are shared by a family of systems in which only '
the long-range part of the Coulomb potential is kept; this s
opens a way to faster molecular-dynamics simulations of _
these systems. Similarly, the gravitational system, which is V(y)‘n; VnCO%Y, ©
equally fundamental, exhibits specific statistical behaviors
[10-12. A truncation of the gravitational interaction to Iong— where Xj is the position of particlg (with massm, and
range components was also seen to preserve some of its d()‘nargeqj) on the interval of length. with periodic boundary
namical relaxation characteristifs3,14. , conditions(viz. the circleS_=R/L), p; e R is its conjugate

A proper understanding of the analogy and differencesyomentum, and,=2n/L. So far, interest in the equilib-
between systems with long-range pair interactions requires @ o, giatistical mechanics of such one-dimensional gas mod-

discussion of their equilibrium statistical mechanics. The ai : I . : )
of the present paper is to show which systems with long]_els was motivated principally b§f) the rigorous understand

. ; I ing of phase transitions and of equations of state of van der
range interactions behave similarly to the Coulomb one an aals typd 1720, (ii) the search for exactly solvable mod-
which systems do not—in particular by undergoing a phas yp ’ y

transition. For simplicity we restrict our discussion to one-.els’ anc_i(iii) the specific case of C_oulomb and gra\_/itational
dimensional model§15]. |nteract|0n§. Well-known models |_nclude _the following.
In Sec. | we introduce the model family and its relevant (1) The ideal gas of noninteracting particlag;=0 for all
variables; we discuss the connection between the mean-fieltt i o . ]
limit (N—o, L fixed and the thermodynamic limit (2) The mean-field Hamiltonian antiferromagneticy
(L—oo, N/L fixed). In Sec. Il we reduce the computation of model[3]: V;>0 and allV,=0 for n>1.
canonical averages to the estimation of Bessel-like integrals. (3) The Coulomb plasma on the circle without neutraliz-
Their evaluation is straightforward for the plasma family asing background of Lenard and Pragdn,6-9,21,22
shown in Sec. Ill. In Sec. IV we comment on the phaseV,=n 2K’ for n running over odd positive integers,
tratnsiii_o? inc;l]gcr:ed by atfracg\_/e com%or)ents in tr|1e interactior\\,t\,ith s—o and K'=L/(7%€)>0, so that V(x)=(%
potential, which was also discussed in a single-component| «y) ;o #=x/L(mod1)e[ - 1/2,1/2.
gg?v?/o?l)(/elrrs]?:g?g and co-workef$3,14 and by Ruffo and (4) The jellium (or one-component Coulomb plasma with
Sl uniform neutralizing backgroundon the circle [23,24:
I. HAMILTONIAN ROTATOR MODEL V,=n"2K’ for n running over all positive integers, with
s—» and K'=L/(27%€;)>0, so that V(x)=(3—|&|*
In the present paper, we discuss the equilibrium properties £2)L/(2¢o).
of a system oN identical classical particles described by the  (5) The single-speciesj¢=1 Vr) exponentially repulsive
Hamiltonian points mode[25]: V=K’ yL/(n?+ y2L?), with K’>0 and
¥>0, so thatV(x)=K’'=;_ __exp(— yjx—rL|).
(6) The hard rod mode]26] as a limit of the previous
*Electronic address: elskens@newsup.univ-mrs.fr model with y—o and K'e”™ fixed (with b>0 the rod
Electronic address: antoni@jollyjumper.mpipks-dresden.mpg.delength.
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(7) Charged hard rodg27]. Note that this expression is bounded below N,
(8) The single-species mean-field Hamiltonian ferromag-=(N/2)2 ..y <0)VmQ with the average quadratic charge
netic XY model [3,13,14,1& V;<0 and all V,=0 for
n>1.
(9) The single-species self-gravitating system on the Q2:N‘1E 2. (12
circle: V,=—n"27"2LG for n running over odd positive T
integers, withs—oo and gravitation constar>0.

The obvious constants of the motion are total momentunrhe lower boundV,,,, may be the ground-state energy as in
N the antiferromagnetiXY model. However, frustration may
=S 4) prevent Vi,; from reachingV,,: consider, e.g.,V3<O0,
= V5<0 with V,;>0.

It is also important to remark that we kekpfixed in this
and the energyE=H. The Hamiltonian(1) generates the paper. The scaling b of the interparticle coupling empha-
equations of motion sizes the mean-field limiN—o with all V, fixed. This is

generally not the usual thermodynamic limit, where both the
X;=p;/m;, (5) pair interaction potentiaV(x) and densityN/L are fixed.
Indeed, in the usual thermodynamic limit, the Fourier repre-
.0 s N _ sentation of the potentia¥(y) involves L-dependent wave
j_NZ 21 0rKnVnSinkn(Xj —X;), (6)  numbersk,=27nL 1. However, mean-field limit and ther-
T modynamic limit are equivalent for the Coulomb-jellium-
which are more conveniently expressed using the mean-fiel@ravitation family, for whichV,Nn % in this case, the
variablesS, , defined as t ermodynamw limit coincides with the Kac or van der
Waals limit[19].

N N
= 12 & 12 ik 7)
Ni<1 4 COn; 'Ni=1 qiSIn; ( Il. PARTITION FUNCTION AND DISTRIBUTION

OF THE MEAN FIELDS
with amplitude S,=|S,| and phase¢,=Arg(S,), with
—7<¢,<m. The two components &, are thenth Fourier
coefficients of the spatial distribution, and correspond to spap
tial scaleL/n. When the distribution of the particles is ran-

In the canonical ensemble with inverse temperagjrthe
artition function is

dom uniform on the circle, the central limit theorem implies Z(N,B)=2Z, (13
that

S, =O(N" 12 ®) where one readily finds the kinetic contribution
Conversely, one expect,=0(1) in an orderedi.e., clus- 2 N 27rm; 12
tered phase. ZK:J ,32 2m p=1I1 ( )

Using these fields, the equation of moti(@) reads ! =1
2aM |\ N2
with the local field
with the average masdd = (I1}_,m;)*™.
S . . .
] The potential contribution
AC)= 2, knVnSrsin(knx— ), (10

where bothS,, and ¢,, depend on timdcf. Egs.(7)]. The Zy= f exp( B= 2 Vo2 | dNx (15

N-body motion thus reduces to a single-particle problem in
the self-consistent fieldS,, with n=1, ... s. The time evo-
lution of these fields, which follows from Eq&) and(7), is  is evaluated using the integral representation of Gaussian
not autonomous, and results from the motions of all particlegunctions forge R? andc e R:
(but an approximate dynamics involving only resonant par-
ticles can be derived in some cag@s-9)). 1

Our aim in this paper is to investigate the Gibbs canonical exp(—cgz)= _J exp(— u2+2i \/Eu' g)dzu, (16)
distribution of the fieldsS, along with the thermodynamic ™ Jr?
potentials of our system. This is natural as the potential en-
ergy (3) can be written in terms of the mean fields only, =~ whereg=|g|. Substituting definitior{7) into Eq.(15), defin-

ing

N S
V==, V., S2. 11
tot Zn; WS (1) C= B2, an
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and applying Eq(16), yields q
sﬁ”:N(H LC,) (24)

S
_ - 2, o
Zy= J’SNJRZSW Sn=1 exp( —uz+2iYNc,u,- S,)d?udMx and phasepe™=0.

(18
Ill. PLASMA (OR ANTIFERROMAGNETIC ) MODELS

° The case wher& is non-negative-definit¢l9], i.e., no

N
_ 2
= SLNszs( n];[l e “")jl;[l (J(2q;c/Nu))d*u, (Fourier) coefficient V,, is (strictly) negative, is easily
(19) treated. Indeed, for real vectovs: R, | 7(v)|<1, with the
bound reached only at the origin. Therefore, in the limit

where \c/Nu=(\/c,/Nu,). We define the function of/ N—>E>o,)one expandg/(v) around this maximum to evaluate
e (12s: Eq. (19:

S

1 : , -
_ H @l vnCosNX’ — ) 4y 7 =J(—Vv)*, (20 Zy=~ SLNJ )
2 S, =1 R4S

\7(V) ( Hl euﬁ)( H eBQZVnuﬁ/2> dZSu (25)

n= n=1

wherev,=(v,c0,,v,Sin6,), and the star denotes complex s

conjugation. Estimating the partition function now reducesto  _ 2 1

the study of the function7, for which elementary calculus L nﬂl (1+BQVn/2) . (26)
yields a series representation in products of Bessel functions.

Thermodynamic potentials then follow directly, Similarly the joint characteristic function of mean-field vari-

ables is

F=—1i ! InZ U—a('BF) 21

ST mNg"e VT o D :
v(o)~[] o~ Q%07(4+28Q2V )N 27)
To describe the distribution of mean fields, we compute n=1
their joint characteristic function, i.e., the Fourier transform . o o
of the joint probability density for the-component vector 'I_'he Iatte_r equation shows that the joint dlstrlbut_lon of mean-
S. Since this vector may include components for whichfield variables approaches a Gaussian one, with asymptoti-

V,=0, we actually consider all mean fielés for any finite ~ cally (@sN—c) independent componert; . EachS, obeys
set of values oh. Thus we compute, foore RS, a central limit theorem; its expectation vanishes, and its co-

variance matrix is scalar, with trace

P — oSy =7 -1 *SLN *uﬁ N 2 PINE
(o) <nHle > v tar fm(nnle ) (S§)=2<(%Zl q,—cosknxj) >:%+O(N2).
N o g " (28
x 1 (j(qanLqu c/Nu))dzsu. (22)
=1

This distribution ofS,, implies that the local field10) at any

The moments of are the coefficients of the Taylor series POINtX has a Gaussian distribution, wif(x))=0 and
expansion ofl.

For a single species system, the correlation function of the
particles is the density at distangdrom a test particle; itis ~ (A(X)2)=N"1Q2>, k2V2(2+BQ3V,) 1+ O(N?). (29
given by n

The structure factors, i.e., the Fourier coefficients of the cor-
Cy) = (8(Xg—Xp—y)) = 1+ cy) 1 relation function(23), are obtained in the same way.
L N-1 L For a single-species syster®€q), the fields’ responses
(24) to a test particled) at the origin

+—2 i Chcok 23
L(N_l)n:]_ nCO ny’ ( ) 2
o . = (30)
where the sum extends over all positive integers, with N 2+ BQ°V,

Ch=Nqg %]S,|®—1. Given a particle ak,=0, its contri-

bution to the mean field§with the bare valueg/N) is  shows that the screening is more efficient for the larger cou-
shielded or enhanced by the other particles, so that the epling constantsV,, and for the smaller temperaturess *.
pectations of effective fields have amplitude One checks that
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C(y)=L = BL YN-1)"1Q?V(y)+0O(B?) oy potencial
2
=L"ex ——ﬂ(,g\,\_/(ly))m(ﬁ% (31)

in the high-temperature limit§— 0). The repulsion between
particles ensures that the Fourier compon&hiand S, de-
pend only ongV,,, independently of each other. In particu-
lar, the fluctuations o8, are exactly those of the ideal gas  FiG. 1. Pair interaction potential(y) for Lenard-Prager plasma
for all n such thatv,=0; fluctuations are smaller than for (s=c: full line) and for truncations to first Fourier components
the ideal gas fom such thatV,>0. The reduction factor (s=1: dots,s=3: dashed ling with q=¢,=1, L=2.
depends oiB in such a way that one recovers the ideal gas in
the high-temperature limit whered§ S2)=0(T)—0 in the  becomes flat, as it must for the plasma. Furthermore, the
low-temperature limit, in agreement with the ground-statescreened local field10) associated to a particle 81=0,
study.

The diversity of specieé/ariousq; or m;) does not much o
affect the thermodynamic behavior: the partition function A(y)zi e V=rtiosgy—rL), (37
and thermodynamic potentials depend only on thea- 2Negrs=e
dratio mean chargeQ and the (geometri¢ mean mass _ )
M =expN~'ZjInm). The free energy of our model and its and the correlation function
entropy per particle are

N 1 -
= — =ly=rL|/x

T Q2v, CY=In=D 2(N—1))\Dr;w € > (39

F=FO+NE In| 1+ = ) (32
" exhibit the well-known exponential decay due to Debye
screening.

F-F, T Vi, Similarly, the Lenard-Prager plasnial,22,28,29 is re-

S=S— T N; V,+2T (33 covered in the limits—, with coefficientsV,=K'n~2 for

odd n, and m;=M and g;=Q=1 (using the conjugation
where Fo=— (T/2)In(2zMT)—LT is the ideal gas free en- Symmetry of oddd interactiong. The partition function is
ergy, andS; is the ideal gas entropy. One computes that the

contribution of the repulsive interaction increases the free o BK’ ~-1
energy, the internal enerdy=F + TS, and the heat capacity LNz, = H 1+ —2) =secliw\BK’'/8). (39
TaS/dT, and reduces the entropy. These formulas hold for m=1 2(2m-1)

all models withV,,=0Vn; these models have positive energy L .
and undergo no phase transition. The even Fourier fieldS, have a temperature-independent

For coefficientsV,=K'n"P for all n>0, and a single distribution withN(S2)=1, while the odd fields are distrib-
species =M, g;=Q=1), the partition function is found uted according to E¢(36). The correlation function reads
1 1 -
= K C(Y)Zt—mrz (—1)reXF<—kD

explicitly:
rL‘)
-1 P Y—5 |
= 2
Nz — ) = g
LNz, n1;[l 1+ an) q];[lr(1+z), (39) (40)

with z=(BK'/2)"Pe?7/P and Euler's gamma functioi. A~ With kp?=A5=Leo/(28Q?).
special case is the jelliufi4] The factor 1/2(with respect to jelliun accounts for the
fact that the Lenard-Prager plasma behaves like a two-
7BK’ species system, containing particles in a length_/2. In-
VE———— . (35)  deed, as the sum overis restricted to odd values of, the
2 sini(7BK'/2) system has a conjugation symmetry: to the particle at posi-
tion x, with chargeq, massm, and momentunp, one can
Ussociate a ghost particle at positiorr L/2 with the same
mass and momentum, but with opposite chdrge9|. It is
) N 5 then more intuitive to view the system as madégbarticles
o _ 2 —2v 1 moving on half a circle &x=<L/2, with modified boundary
N(Sn)= N< (121 cod<nxj> >_(1+)\D Kn®) (36) conditions such that, when a particle exiemters on one
side, its antiparticle entefgxits) on the opposite side. Figure
according to Eg. (28). The Debye Ilength 1 displays the potential for the Lenard-Prager madei«)
Ap=Q *(Ley/B)Y? takes into account the normalization of and for its truncation to onés=1, V,=2/7) and two(s=3,
the Coulomb interaction b~ ! in the mean-field limit. In  V,=2/m, V,=0, V3=V;/9) Fourier components, withy
the limit (L—o, with N/L and\p fixed), the spectruni36) =¢y=1 andL=2m.

LNz

The mean fields have independent isotropic Gaussian dist
butions with
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T=100

FIG. 2. Nonconstant par(y)=(N—1)[C(y)—L '] of the correlation function at given temperatufies 8~ 1.

The range of the Debye screening\is and its strength is  use subscripm instead ofn for them. Then, for vectors
(almos} inversely proportional tdNp=2NAp/L, which is  c R2s one finds, withu,= (u,coss, ,u.sing,),
the expected number of particles in the Debye sphere. The
conjugation symmetry of the model in terms of particles
shows up in the fact thaZ(y) — L 1=L"1—C(y+L/2): the
Debye repulsion ay for a particle is equivalent to Debye
repulsion aty+L/2 for its antiparticle.
Figure 2 displays this function for various temperatures 1 2 ,
for the potentials of Fig. 1. The Debye lengthNig= /7 T. < EJ [ e vn/N+2aVmm/MNuncosmx =0mqyr (41)
The repelling nature of the interaction appears as correlation S2r M
functionsC(y) are minimum aty=0. The Debye length is
Ap= V7 T. The repelling nature of the interaction appears as 1 ) )
correlation function<(y) are minimum aty=0. iz—f [T e uw/N+2aVrm/Numcosmxgyys (42
For high temperatured”*=T=100), the difference be- TSy m
tween the model’s correlation functid@(y) and the ideal
gas one [constant L™ in Eq. (31)] is small, and
C(y)=—BQ?V(y)/(N—1) to first approximation, in agree- <[l e*“rzn’N|0(2qu\/7m/N Upy) Yem, (43)
ment with Eq.(31). The truncations ts=1 and 3 of the m
interaction generate almost the same correlation function as
the full sawtooth(Coulomb potentials—o. The shape of where the latter expression follows from lder’s inequality
C is very close to that o¥/, andC has almost everywhere for any choice of k, such that x,=1(Vm) and
the same order of magnitude: there is almost no screening, <, '=1; |, is the modified Bessel function. The equality
(Ap>L). holds in Eqgs.(41) and (42 for =0, with u,=0 if V=0
For T=1/2, i.e., moderate balance between kinetic andcand 4,,=0Vm.
potential energies, the departure ©f from L~ becomes It is easily seen(becausel,(z)<e*’) that the upper
larger; screening is still weak, & still has essentially the bound (43) has a unique maximum, at=0, provided that
shape ofv. o _km0? ym| <1 for all m. As equality holds in(41)—(43) for
For T=0.01, the three curves have a significant ampli- ;= ando= 0, this implies thaZ,, and¥ are given by Egs.
tude, corresponding to a significant effect of the interactiortzs), (26), and (27) provided thatB<p.; in the single-
on the particle relative positions. Screening effect is clear a8pecies casq=1, this bound yields8,= — 2/(Z ;).
the correlation functions are much closer to 0 away from = e high-temperature regime is thus analogous to the
y=0; screening has damped the long-wavelengih<ko)  plasma case, except that the expected mean-field intensities
components of the Coulomb interaction. The-« correla-  5re enhanced for Fourier components with,<0; anti-
tion functionC exhibits a marked peak gt=0, and differs  screening may occur in the correlation function. Our argu-
significantly from thes=1 and 3 correlation functions: the ent only yields a lower estimai’éc=,80_1 for the transition
fr?;rst;;r;gc?r;grngfl%Jgggi?uz:aeagotthzﬁgenzn?:ﬁgingoiigthtiegnR;mperature: numerical simulations show that thlis regime
This is clear fromC,,= (k2+k3) ~*, which follows from Egs. Ti”iﬁ efterz]d to the crifical temperature = Te
=supy(—Q“Vy)/2, which means that the maximum of Eq.
(36) and (23). (41) is also at the origin for-2/(2,Q?V,) <8< B.. Physi-
cally, if one treats the Fourier componerfis as distinct
fields [each of which could condensate at its own tempera-
ture —2/(Q?V,,) ], then one could say that these components
When some coupling constarit§, are negative, the pre- with different wave numbers do not cooperate to raise the
vious section estimates @, andV no longer hold. As Eq. temperature of the phase transition.
(19) shows that the dominant contribution Zg in the limit Note that the phase transition occurs even if the two-
N—oo results from the neighborhood of the maximum of particle interaction potentia¥ (y) has a single maximum at
J, let us estimate how this maximum changes ydtand the  y=0 and a single minimum at=L/2, which is repulsive on
V,'s. the circle: the transition is indeed a collective effect associ-
Let v,,= —c,, for those negative coupling constants andated with the mean-field model.

S

j(q%+2q C/Nu) [T e-vin

n=1

IV. FERROMAGNETIC MODELS
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Inequalities(41)—(43) predict the phase transition exactly ian stochastic process with respectxtoand a white noise
if there is a single negative coefficieM,,. Indeed, for [29] in the case of a plasma in the limit—o. For the

o=0 and foru having only one nonzero componernid), plasma, the correlation function and tfsereenefleffective
force field generated by a particle are obtained analytically:

they decay exponentially, on the well-known characteristic
J2G/eINU) =1 (20 ym/NUp). (44) Degye Ienéth_ P y

In this case, which includes the simple ferromagnetic mode] | @ Single mean field contributes negatively to the inter-
[3,13,14,16 with V,<0 andV,=0 for n>1, the rotator action energy, the system undergoes a second-order phase

system has partition functiof26) and characteristic function ::e?]qsglr%?urvemrz ':21'2 rilidthzss;rf:;hgfr:%rgeﬁgr;ni::r;ea:éggé| d
(27) for all temperatures abov&.=—Q?V,,/2, for which P 9 y

Eq.(26) actually diverges; theantijscreening30) enhances gggg)r?lﬂonlz rzs I;cr:]:d fl:l)JIIyenir:gsgrzg]:tgfgit{ﬁect?osr?éngr?g%
the bare field. Afl, this system undergoes a second-ordetr, 9 plac y ; responding
o g field component, with the mechanism of the Jeans instability.
phase transition with order paramety. . ' o X
. ) . The case with several mean fields contributing negatively
Below the critical temperature, the mean-field Fourier

components are no longer independent: compor@ntaith has the same high-temperature regime; the low-temperature
ponents 9 _Fl), ' P 'ﬁr N regime deserves a separate study: for instance, one cannot
n not divisible by m are O(N~*?), but S,=0(S},) and

- for n=rm: dinalv. th Iation function i exclude the occurrence of several phase transitions.
$n~T ¢m fOr n=rm; accordingly, the correlation function is ¢ hresent work makes no prediction on the time evolu-

modulated with p.e“o““m- A S|m|lla'r result, with emphaas tion of our systems: equilibrium statistical mechanics cannot

on the analogy _W'th Jeans |nsFab|I|ty of self-gra\{ltgtlng Sys'compute relaxation times or describe the evolution of fields,
tems, was obtained by InagaKi3] through maximizing en-  J" ¢+ rbulent structures, as observed, e.g., inXiyemodel
tropy. (or s=1 rotator model[3-6,8,16,32 However, it provides

a background of predictions enabling an interesting compari-

V. CONCLUSIONS son with the dynamical behavior of the models under con-

We computed the partition function, thermodynamic po_sideration. These questions will be discussed in forthcoming

tentials, field distribution and correlation function of the ge- P2Pers.
neric family of one-dimensional systemslgfparticles inter-
acting pairwise via their mean fields. Our method is quite
classical, and involves neither the integral operators used in The authors thank F. Doveil, R. Livi, and S. Ruffo for
the exact solutions available in the literatg#3—-25,21,28— fruitful discussions. Their interest for these models was trig-
30] nor recurrence relatiori81] for the grand partition func- gered by the workshopS8omplexity and Evolutiofinstitute
tion. for Scientific Interchange, Torino, 1992 and 199Hd Cha-

If all mean fields contribute positively to the interaction otic and Ordered Energy Flow in Latticé€entre Europen
energy, i.e., in the fully antiferromagnetic case, the fieldsde Calcul Atomique et Mokulaire, Lyon, 1994 The au-
S, obey central limit theorems and behave independently inhors are grateful to Professor M. Rasetti for the use of ISI
the limit N—o at any temperature: no phase transition oc-computers. M. A. was supported by the Commission of the
curs in this family. We recover the observation that the forceEuropean Communities(Contract No. ERBCHBGCT
gA(x) experienced by a test particle at positiors a Gauss- 930295.
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