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Equilibrium statistical mechanics of one-dimensional Hamiltonian systems with long-range force
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The system ofN identical classical particles on the circle of lengthL interacting via a pair potential is
investigated in the mean field limit (N→`, L fixed!. Its physical properties are determined by the Fourier
components of the interaction~mean! field. The partition function, the joint distribution of the interaction
fields, the local field, and the correlation functions are computed. If the interaction is semidefinite non-negative,
field components become independent forN→` and satisfy central limit theorems. If the interaction has
negative Fourier components, a phase transition occurs.@S1063-651X~97!15705-1#

PACS number~s!: 05.45.1b, 64.60.Cn, 05.70.Fh
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Systems of many particles interacting via two-body lon
range forces have peculiar equilibrium and nonequilibri
statistical mechanics@1,2#. The Coulomb system, which ha
been thoroughly investigated, combines the difficulties
long-range interaction with a short-range divergence—or
one dimension, with a discontinuity in the electric field. R
cent numerical simulations@3–6# and theoretical argument
@7–9# indicate that the characteristics of Coulombian plas
turbulence are shared by a family of systems in which o
the long-range part of the Coulomb potential is kept; t
opens a way to faster molecular-dynamics simulations
these systems. Similarly, the gravitational system, which
equally fundamental, exhibits specific statistical behavi
@10–12#. A truncation of the gravitational interaction to long
range components was also seen to preserve some of it
namical relaxation characteristics@13,14#.

A proper understanding of the analogy and differen
between systems with long-range pair interactions requir
discussion of their equilibrium statistical mechanics. The a
of the present paper is to show which systems with lo
range interactions behave similarly to the Coulomb one
which systems do not—in particular by undergoing a ph
transition. For simplicity we restrict our discussion to on
dimensional models@15#.

In Sec. I we introduce the model family and its releva
variables; we discuss the connection between the mean-
limit (N→`, L fixed! and the thermodynamic limi
(L→`, N/L fixed!. In Sec. II we reduce the computation
canonical averages to the estimation of Bessel-like integr
Their evaluation is straightforward for the plasma family
shown in Sec. III. In Sec. IV we comment on the pha
transition induced by attractive components in the interac
potential, which was also discussed in a single-compon
case by Inagaki and co-workers@13,14# and by Ruffo and
co-workers@3,16#.

I. HAMILTONIAN ROTATOR MODEL

In the present paper, we discuss the equilibrium proper
of a system ofN identical classical particles described by t
Hamiltonian

*Electronic address: elskens@newsup.univ-mrs.fr
†Electronic address: antoni@jollyjumper.mpipks-dresden.mpg
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H5(
j51

N pj
2

2mj
1Vtot , ~1!

with

Vtot5
1

2N (
j ,r51

N

qrqjV~xr2xj !, ~2!

V~y!5 (
n51

s

Vncoskny, ~3!

where xj is the position of particlej ~with massmj and
chargeqj ) on the interval of lengthL with periodic boundary
conditions~viz. the circleSL5R/L), pjPR is its conjugate
momentum, andkn52pn/L. So far, interest in the equilib
rium statistical mechanics of such one-dimensional gas m
els was motivated principally by~i! the rigorous understand
ing of phase transitions and of equations of state of van
Waals type@17–20#, ~ii ! the search for exactly solvable mod
els, and~iii ! the specific case of Coulomb and gravitation
interactions. Well-known models include the following.

~1! The ideal gas of noninteracting particles:Vn50 for all
n.

~2! The mean-field Hamiltonian antiferromagneticXY
model @3#: V1.0 and allVn50 for n.1.

~3! The Coulomb plasma on the circle without neutral
ing background of Lenard and Prager@4,6–9,21,22#:
Vn5n22K8 for n running over odd positive integers

with s→` and K85L/(p2e0).0, so that V(x)5( 14
2uju)L/(2e0), j5x/L(mod1)P@21/2,1/2#.

~4! The jellium ~or one-component Coulomb plasma wi
uniform neutralizing background! on the circle @23,24#:
Vn5n22K8 for n running over all positive integers, with
s→` and K85L/(2p2e0).0, so that V(x)5( 162uju ‘
1j2)L/(2e0).

~5! The single-species (qr51 ;r ) exponentially repulsive
points model@25#: Vn5K8gL/(n21g2L2), with K8.0 and
g.0, so thatV(x)5K8( r52`

` exp(2gux2rLu).
~6! The hard rod model@26# as a limit of the previous

model with g→` and K8egb fixed ~with b.0 the rod
length!.e
6575 © 1997 The American Physical Society
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~7! Charged hard rods@27#.
~8! The single-species mean-field Hamiltonian ferroma

netic XY model @3,13,14,16#: V1,0 and all Vn50 for
n.1.

~9! The single-species self-gravitating system on
circle: Vn52n22p22LG for n running over odd positive
integers, withs→` and gravitation constantG.0.

The obvious constants of the motion are total moment

P5(
j51

N

pj ~4!

and the energyE5H. The Hamiltonian~1! generates the
equations of motion

ẋ j5pj /mj , ~5!

ṗ j5
qj
N(
n51

s

(
r51

N

qrknVnsinkn~xj2xr !, ~6!

which are more conveniently expressed using the mean-
variablesSn , defined as

Sn5S 1N(
j51

N

qjcosknxj ,
1

N(
j51

N

qjsinknxj D , ~7!

with amplitude Sn5uSnu and phasefn5Arg(Sn), with
2p,fn<p. The two components ofSn are thenth Fourier
coefficients of the spatial distribution, and correspond to s
tial scaleL/n. When the distribution of the particles is ran
dom uniform on the circle, the central limit theorem impli
that

Sn5O~N21/2!. ~8!

Conversely, one expectsSn5O(1) in an ordered~i.e., clus-
tered! phase.

Using these fields, the equation of motion~6! reads

ṗj5qjA~xj !, ~9!

with the local field

A~x!5 (
n51

s

knVnSnsin~knx2fn!, ~10!

where bothSn and fn depend on time@cf. Eqs. ~7!#. The
N-body motion thus reduces to a single-particle problem
the self-consistent fieldsSn with n51, . . . ,s. The time evo-
lution of these fields, which follows from Eqs.~5! and~7!, is
not autonomous, and results from the motions of all partic
~but an approximate dynamics involving only resonant p
ticles can be derived in some cases@7–9#!.

Our aim in this paper is to investigate the Gibbs canon
distribution of the fieldsSn along with the thermodynamic
potentials of our system. This is natural as the potential
ergy ~3! can be written in terms of the mean fields only,

Vtot5
N

2(
n51

s

VnSn
2 . ~11!
-

e

ld

a-

n

s
-

l

n-

Note that this expression is bounded below byVlow
5(N/2)( (m:Vm,0)VmQ

2 with the average quadratic charge

Q25N21(
j
qj
2. ~12!

The lower boundVlow may be the ground-state energy as
the antiferromagneticXY model. However, frustration may
prevent Vtot from reachingVlow : consider, e.g.,V3,0,
V5,0 with V1.0.

It is also important to remark that we keepL fixed in this
paper. The scaling byN of the interparticle coupling empha
sizes the mean-field limitN→` with all Vn fixed. This is
generally not the usual thermodynamic limit, where both
pair interaction potentialV(x) and densityN/L are fixed.
Indeed, in the usual thermodynamic limit, the Fourier rep
sentation of the potentialV(y) involves L-dependent wave
numberskn52pnL21. However, mean-field limit and ther
modynamic limit are equivalent for the Coulomb-jellium
gravitation family, for whichVn}Nn

22; in this case, the
thermodynamic limit coincides with the Kac or van d
Waals limit @19#.

II. PARTITION FUNCTION AND DISTRIBUTION
OF THE MEAN FIELDS

In the canonical ensemble with inverse temperatureb, the
partition function is

Z~N,b!5ZVZK , ~13!

where one readily finds the kinetic contribution

ZK5E
RN
expS 2b(

j51

N pj
2

2mj
D dNp5)

j51

N S 2pmj

b D 1/2

5S 2pM

b D N/2, ~14!

with the average massM5() j51
N mj )

1/N.
The potential contribution

ZV5E
SL
N
expS 2b

N

2(
n51

s

VnSn
2D dNx ~15!

is evaluated using the integral representation of Gaus
functions forgPR2 andcPR:

exp~2cg2!5
1

pER2exp~2u212iAcu•g!d2u, ~16!

whereg5ugu. Substituting definition~7! into Eq.~15!, defin-
ing

cn5bVn /2, ~17!
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and applying Eq.~16!, yields

ZV5E
SL
NER2sp2s)

n51

s

exp~2un
212iANcnun•Sn!d2sudNx

~18!

5p2sLNE
R2s

S )
n51

s

e2un
2D )

j51

N

„J~2qjAc/Nu!…d2su,

~19!

where Ac/Nu5(Acn /Nun). We define the function ofv
PC2s:

J~v!5
1

2pES2p
)
n51

s

eivncos~nx82un!dx85J~2v!* , ~20!

wherevn5(vncosun ,vnsinun), and the star denotes comple
conjugation. Estimating the partition function now reduces
the study of the functionJ, for which elementary calculus
yields a series representation in products of Bessel functi
Thermodynamic potentials then follow directly,

F52 lim
N→`

1

Nb
lnZ, U5

]~bF !

]b
. ~21!

To describe the distribution of mean fields, we comp
their joint characteristic function, i.e., the Fourier transfo
of the joint probability density for thes-component vector
S. Since this vector may include components for whi
Vn50, we actually consider all mean fieldsSn for any finite
set of values ofn. Thus we compute, forsPR2s,

C~s!5K )
n51

s

eisn•SnL 5ZV
21p2sLNE

R2s
S )
n51

s

e2un
2D

3)
j51

N SJS qj s

N
12qjAc/NuD Dd2su. ~22!

The moments ofS are the coefficients of the Taylor serie
expansion ofC.

For a single species system, the correlation function of
particles is the density at distancey from a test particle; it is
given by

C~y!5^d~x12x22y!&5
1

L
1

c~y!

N21
5
1

L

1
2

L~N21! (n51

`

Cncoskny, ~23!

where the sum extends over all positive integers, w
Cn5Nq22^uSnu2&21. Given a particle atx150, its contri-
bution to the mean fields~with the bare valueq/N) is
shielded or enhanced by the other particles, so that the
pectations of effective fields have amplitude
o

s.

e

e

h

x-

Sn
eff5

q

N
~11LCn! ~24!

and phasefn
eff50.

III. PLASMA „OR ANTIFERROMAGNETIC … MODELS

The case whereV is non-negative-definite@19#, i.e., no
~Fourier! coefficient Vn is ~strictly! negative, is easily
treated. Indeed, for real vectorsvPR2s, uJ(v)u<1, with the
bound reached only at the origin. Therefore, in the lim
N→`, one expandsJ(v) around this maximum to evaluat
Eq. ~19!:

ZV'p2sLNE
R2s

S )
n51

s

e2un
2D S )

n51

s

e2bQ2Vnun
2/2D d2su ~25!

5LN)
n51

s

~11bQ2Vn /2!21. ~26!

Similarly the joint characteristic function of mean-field var
ables is

C~s!' )
n51

s

e2Q2sn
2/~412bQ2Vn!N. ~27!

The latter equation shows that the joint distribution of mea
field variables approaches a Gaussian one, with asymp
cally ~asN→`) independent componentsSn . EachSn obeys
a central limit theorem; its expectation vanishes, and its
variance matrix is scalar, with trace

^Sn
2&52K S 1N(

j51

N

qjcosknxj D 2L 5
2Q2N21

21bQ2Vn
1O~N22!.

~28!

This distribution ofSn implies that the local field~10! at any
point x has a Gaussian distribution, with^A(x)&50 and

^A~x!2&5N21Q2(
n

kn
2Vn

2~21bQ2Vn!
211O~N22!. ~29!

The structure factors, i.e., the Fourier coefficients of the c
relation function~23!, are obtained in the same way.

For a single-species system (Q5q), the fields’ responses
~24! to a test particle (q) at the origin

Sn
eff5

q

N

2

21bQ2Vn
~30!

shows that the screening is more efficient for the larger c
pling constantsVn and for the smaller temperaturesb21.
One checks that
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C~y!5L212bL21~N21!21Q2V~y!1O~b2!

5L21expS 2
bQ2V~ y!
N21 D1O~b2! ~31!

in the high-temperature limit (b→0). The repulsion between
particles ensures that the Fourier componentsCn andSn de-
pend only onbVn , independently of each other. In partic
lar, the fluctuations ofSn are exactly those of the ideal ga
for all n such thatVn50; fluctuations are smaller than fo
the ideal gas forn such thatVn.0. The reduction factor
depends onb in such a way that one recovers the ideal gas
the high-temperature limit whereasN^Sn

2&5O(T)→0 in the
low-temperature limit, in agreement with the ground-st
study.

The diversity of species~variousqj ormj ) does not much
affect the thermodynamic behavior: the partition functi
and thermodynamic potentials depend only on the~qua-
dratic! mean chargeQ and the ~geometric! mean mass
M5exp(N21(jlnmj). The free energy of our model and i
entropy per particle are

F5F01
T

N(
n

lnS 11
Q2Vn

2T D , ~32!

S5S02
F2F0

T
1
T

N(
n

Vn

Vn12T
~33!

whereF052(T/2)ln(2pMT)2LT is the ideal gas free en
ergy, andS0 is the ideal gas entropy. One computes that
contribution of the repulsive interaction increases the f
energy, the internal energyU5F1TS, and the heat capacit
T]S/]T, and reduces the entropy. These formulas hold
all models withVn>0;n; these models have positive ener
and undergo no phase transition.

For coefficientsVn5K8n2p for all n.0, and a single
species (mj5M , qj5Q51), the partition function is found
explicitly:

L2NZV5 )
n51

` S 11
bK8

2np D
21

5 )
q51

p

G~11zq!, ~34!

with z5(bK8/2)1/pe2p i /p and Euler’s gamma functionG. A
special case is the jellium@24#

L2NZV5
pbK8

2 sinh~pbK8/2!
. ~35!

The mean fields have independent isotropic Gaussian d
butions with

N^Sn
2&5

2

NK S (
j51

N

cosknxj D 2L 5~11lD
22kn

22!21 ~36!

according to Eq. ~28!. The Debye length
lD5Q21(Le0 /b)

1/2 takes into account the normalization
the Coulomb interaction byN21 in the mean-field limit. In
the limit (L→`, with N/L andlD fixed!, the spectrum~36!
n

e

e
e

r

ri-

becomes flat, as it must for the plasma. Furthermore,
screened local field~10! associated to a particle atx150,

A~y!5
q

2N«0
(

r52`

`

e2uy2rL u/lDsgn~y2rL !, ~37!

and the correlation function

C~y!5
N

L~N21!
2

1

2~N21!lD
(

r52`

`

e2uy2rL u/lD, ~38!

exhibit the well-known exponential decay due to Deb
screening.

Similarly, the Lenard-Prager plasma@21,22,28,29# is re-
covered in the limits→`, with coefficientsVn5K8n22 for
odd n, andmj5M and qj5Q51 ~using the conjugation
symmetry of odd-n interactions!. The partition function is

L2NZV5 )
m51

` S 11
bK8

2~2m21!2D
21

5sech~pAbK8/8!. ~39!

The even Fourier fieldsSn have a temperature-independe
distribution withN^Sn

2&51, while the odd fields are distrib
uted according to Eq.~36!. The correlation function reads

C~y!5
1

L
2

1

4~N21!lD
(

r52`

`

~21!rexpS 2kDUy2
rL

2 U D ,
~40!

with kD
225lD

2 5Le0 /(2bQ2).
The factor 1/2~with respect to jellium! accounts for the

fact that the Lenard-Prager plasma behaves like a t
species system, containingN particles in a lengthL/2. In-
deed, as the sum overn is restricted to odd values ofn, the
system has a conjugation symmetry: to the particle at p
tion x, with chargeq, massm, and momentump, one can
associate a ghost particle at positionx1L/2 with the same
mass and momentum, but with opposite charge@7–9#. It is
then more intuitive to view the system as made ofN particles
moving on half a circle 0<x<L/2, with modified boundary
conditions such that, when a particle exits~enters! on one
side, its antiparticle enters~exits! on the opposite side. Figur
1 displays the potential for the Lenard-Prager model~s5`!
and for its truncation to one~s51, V152/p! and two~s53,
V152/p, V250, V35V1/9) Fourier components, withq
5e051 andL52p.

FIG. 1. Pair interaction potentialV(y) for Lenard-Prager plasma
(s5`: full line! and for truncations to first Fourier componen
(s51: dots,s53: dashed line!, with q5e051, L52p.
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FIG. 2. Nonconstant partc(y)5(N21)@C(y)2L21# of the correlation function at given temperaturesT5b21.
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The range of the Debye screening islD and its strength is
~almost! inversely proportional toND52NlD /L, which is
the expected number of particles in the Debye sphere.
conjugation symmetry of the model in terms of particl
shows up in the fact thatC(y)2L215L212C(y1L/2): the
Debye repulsion aty for a particle is equivalent to Deby
repulsion aty1L/2 for its antiparticle.

Figure 2 displays this function for various temperatu
for the potentials of Fig. 1. The Debye length islD5ApT.
The repelling nature of the interaction appears as correla
functionsC(y) are minimum aty50. The Debye length is
lD5ApT. The repelling nature of the interaction appears
correlation functionsC(y) are minimum aty50.

For high temperature (b215T5100), the difference be
tween the model’s correlation functionC(y) and the ideal
gas one @constant L21 in Eq. ~31!# is small, and
C(y)52bQ2V(y)/(N21) to first approximation, in agree
ment with Eq.~31!. The truncations tos51 and 3 of the
interaction generate almost the same correlation functio
the full sawtooth~Coulomb! potentials→`. The shape of
C is very close to that ofV, andC has almost everywher
the same order of magnitude: there is almost no scree
(lD@L).

For T51/2, i.e., moderate balance between kinetic a
potential energies, the departure ofC from L21 becomes
larger; screening is still weak, asC still has essentially the
shape ofV.

For T50.01, the three curves have a significant amp
tude, corresponding to a significant effect of the interact
on the particle relative positions. Screening effect is clea
the correlation functions are much closer to 0 away fr
y50; screening has damped the long-wavelength (kn<kD)
components of the Coulomb interaction. Thes→` correla-
tion functionC exhibits a marked peak aty50, and differs
significantly from thes51 and 3 correlation functions: th
short-range contributions are not screened, and are the
the same order of magnitude as the long-range contributi
This is clear fromCn5(kn

21kD
2 )21, which follows from Eqs.

~36! and ~23!.

IV. FERROMAGNETIC MODELS

When some coupling constantsVn are negative, the pre
vious section estimates ofZV andC no longer hold. As Eq.
~19! shows that the dominant contribution toZV in the limit
N→` results from the neighborhood of the maximum
J, let us estimate how this maximum changes withb and the
Vn’s.

Let gm52cm for those negative coupling constants a
he

s

n

s

as

ng

d

-
n
s

of
s.

use subscriptm instead ofn for them. Then, for vectorsu
PR2s, one finds, withun5(uncosun ,unsinun),

UJS qs

N
12qAc/NuD )

n51

s

e2un
2/NU

<
1

2pES2p
)
m

e2um
2 /N12qAgm /Numcos~mx82um!dx8 ~41!

<
1

2pES2p
)
m

e2um
2 /N12qAgm /Numcos~mx8!dx8 ~42!

<)
m

e2um
2 /NI 0~2qkmAgm /Num!1/km, ~43!

where the latter expression follows from Ho¨lder’s inequality
for any choice of km such that km>1(;m) and
(mkm

2151; I 0 is the modified Bessel function. The equali
holds in Eqs.~41! and ~42! for s50, with un50 if Vn>0
andum50;m.

It is easily seen~becauseI 0(z)<ez
2/4) that the upper

bound ~43! has a unique maximum, atu50, provided that
kmq

2ugmu,1 for all m. As equality holds in~41!–~43! for
u50 ands50, this implies thatZV andC are given by Eqs.
~25!, ~26!, and ~27! provided thatb,bc ; in the single-
species caseq51, this bound yieldsbc522/((mVm).

The high-temperature regime is thus analogous to
plasma case, except that the expected mean-field intens
are enhanced for Fourier components withVm,0; anti-
screening may occur in the correlation function. Our arg
ment only yields a lower estimateTc5bc

21 for the transition
temperature: numerical simulations show that this regi
may extend to the critical temperaturebc

215Tc
5supm(2Q2Vm)/2, which means that the maximum of E
~41! is also at the origin for22/((mQ

2Vm)<b,bc . Physi-
cally, if one treats the Fourier componentsSm as distinct
fields @each of which could condensate at its own tempe
ture22/(Q2Vm)#, then one could say that these compone
with different wave numbers do not cooperate to raise
temperature of the phase transition.

Note that the phase transition occurs even if the tw
particle interaction potentialV(y) has a single maximum a
y50 and a single minimum aty5L/2, which is repulsive on
the circle: the transition is indeed a collective effect asso
ated with the mean-field model.
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Inequalities~41!–~43! predict the phase transition exact
if there is a single negative coefficientVm . Indeed, for
s50 and foru having only one nonzero component (um),

J~2qAc/Nu!5I 0~2qAgm /Num!. ~44!

In this case, which includes the simple ferromagnetic mo
@3,13,14,16# with V1,0 and Vn50 for n.1, the rotator
system has partition function~26! and characteristic function
~27! for all temperatures aboveTc52Q2Vm/2, for which
Eq. ~26! actually diverges; the~anti-!screening~30! enhances
the bare field. AtTc , this system undergoes a second-ord
phase transition with order parameterSm .

Below the critical temperature, the mean-field Four
components are no longer independent: componentsSn with
n not divisible bym are O(N21/2), but Sn5O(Sm

r ) and
fn'rfm for n5rm; accordingly, the correlation function i
modulated with periodL/m. A similar result, with emphasis
on the analogy with Jeans instability of self-gravitating s
tems, was obtained by Inagaki@13# through maximizing en-
tropy.

V. CONCLUSIONS

We computed the partition function, thermodynamic p
tentials, field distribution and correlation function of the g
neric family of one-dimensional systems ofN particles inter-
acting pairwise via their mean fields. Our method is qu
classical, and involves neither the integral operators use
the exact solutions available in the literature@23–25,21,28–
30# nor recurrence relations@31# for the grand partition func-
tion.

If all mean fields contribute positively to the interactio
energy, i.e., in the fully antiferromagnetic case, the fie
Sn obey central limit theorems and behave independentl
the limit N→` at any temperature: no phase transition o
curs in this family. We recover the observation that the fo
qA(x) experienced by a test particle at positionx is a Gauss-
d

a
ns
el

r

r

-

-
-

e
in

s
in
-
e

ian stochastic process with respect tox, and a white noise
@29# in the case of a plasma in the limitL→`. For the
plasma, the correlation function and the~screened! effective
force field generated by a particle are obtained analytica
they decay exponentially, on the well-known characteris
Debye length.

If a single mean field contributes negatively to the inte
action energy, the system undergoes a second-order p
transition with this field as order parameter; the hig
temperature regime has the same thermodynamics and
distributions as the fully antiferromagnetic case. Deb
screening is replaced by enhancement for the correspon
field component, with the mechanism of the Jeans instabi
The case with several mean fields contributing negativ
has the same high-temperature regime; the low-tempera
regime deserves a separate study: for instance, one ca
exclude the occurrence of several phase transitions.

The present work makes no prediction on the time evo
tion of our systems: equilibrium statistical mechanics can
compute relaxation times or describe the evolution of fiel
or of turbulent structures, as observed, e.g., in theXY model
~or s51 rotator model! @3–6,8,16,32#. However, it provides
a background of predictions enabling an interesting comp
son with the dynamical behavior of the models under c
sideration. These questions will be discussed in forthcom
papers.
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